船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
多模型对现实世界应用的承诺激发了可视化和理解其内部力学的研究,其最终目标是使利益相关者能够可视化模型行为,执行模型调试并促进对机器学习模型的信任。但是,现代的多模型模型通常是黑盒神经网络,这使得了解其内部力学变得具有挑战性。我们如何能在这些模型中可视化多模式相互作用的内部建模?我们的论文旨在通过提出Multiviz来填补这一空白,这是一种通过将可解释性问题分为4个阶段来分析多模型模型行为的方法:(1)单峰的重要性:每种模式如何有助于下游建模和预测,(2)交叉交叉。 - 模式相互作用:不同模态如何相互关系,(3)多模式表示:如何在决策级特征中表示单峰和跨模式的交互作用,以及(4)多模式预测:决策级特征如何组成以制造一个预言。 Multiviz旨在在不同的模式,模型,任务和研究领域进行操作。通过对6个现实世界任务的8个训练模型的实验,我们表明,Multiviz中的互补阶段共同使用户能够(1)模拟模型预测,(2)将可解释的概念分配给功能,(3)对模型错误分析执行错误分析,(4)使用错误分析到调试模型的见解。 Multiviz公开可用,将定期使用新的解释工具和指标进行更新,并欢迎社区的意见。
translated by 谷歌翻译
机器学习(ML)是人工智能(AI)的子场,其放射学中的应用正在以不断加速的速度增长。研究最多的ML应用程序是图像的自动解释。但是,可以将自然语言处理(NLP)与文本解释任务组合的ML结合使用,在放射学中也具有许多潜在的应用。一种这样的应用是放射学原始胶体的自动化,涉及解释临床放射学转介并选择适当的成像技术。这是一项必不可少的任务,可确保执行正确的成像。但是,放射科医生必须将专门用于原始胶片的时间进行报告,与推荐人或教学进行报告,交流。迄今为止,很少有使用临床文本自动选择协议选择的ML模型的出版物。本文回顾了该领域的现有文献。参考机器学习公约建议的最佳实践对已发布模型进行系统评估。讨论了在临床环境中实施自动质胶的进展。
translated by 谷歌翻译
我们引入了构图软提示(CSP),这是一种参数有效的学习技术,可改善大规模预处理视觉模型(VLMS)的零摄像组成性。 VLM可以在其灵活的文本编码器中代表任意类作为自然语言提示,但在组成零击基准任务上的表现不佳。为了改善VLM,我们提出了一种新颖的软提示形式。我们将构成的属性和对象视为将类定义为词汇的可学习令牌,并在多个及时的构图上调整它们。在推断期间,我们在新组合中重新组装了学习的属性对象词汇。我们表明,CSP在基准数据集上的原始VLM的表现平均为AUC上的10.9个百分点。 CSP还胜过Coop,这是一种调谐前缀上下文的软提示方法,在AUC上平均要点5.8个百分点。我们执行其他实验,以表明CSP对仅属性分类,高阶属性 - 属性对象组成以及预验证属性和微调对象的组合进行了改进。
translated by 谷歌翻译
机器学习从业者通常可以访问数据的频谱:目标任务(通常是有限),未标记的数据和辅助数据的标记数据,用于其他任务的许多可用标记的数据集。我们描述了TAGLET,一个系统为学习技术,用于自动利用所有三种类型的数据并创建高质量的可服装分类器。 TAGLET的关键组件是:(1)根据知识图组织组织的辅助数据,(2)封装用于利用辅助和未标记数据的不同方法的模块,以及(3)将被整合模块组合成可用的蒸馏阶段模型。我们将TAGLETS与最先进的传输学习和半监督学习方法进行比较,四个图像分类任务。我们的研究涵盖了一系列设置,改变了标记数据的量和辅助数据的语义相关性到目标任务。我们发现,辅助和未标记数据的智能融合到多个学习技术使Taglet能够匹配 - 并且最常见的是这些替代方案。 Taglets可作为Github.com/batsresearch/taglet的开源系统使用。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
零拍的学习依赖于语义类表示,例如手工设计的属性或学习的嵌入方式来预测类,而无需任何标记的示例。我们建议通过将节点从矢量空间中的常识知识图中嵌入节点来学习班级表示。常识知识图是未开发的明确高级知识的来源,几乎不需要人类的努力才能应用于一系列任务。为了捕获图中的知识,我们引入了ZSL-KG,这是一种具有新型变压器图卷积网络(TRGCN)的通用框架,用于生成类表示。我们提出的TRGCN体系结构计算节点社区的非线性组合。我们的结果表明,ZSL-KG在语言和视觉中的六个零弹药基准数据集中有五个基于WordNet的方法改进了基于WordNet的方法。
translated by 谷歌翻译